

Agricultural Animals in Research: Special Issues and Ethical Considerations

Swidiq Mugerwa (PhD)

National Agricultural Research Organization

12th ANREC, Kampala, 21–22 October 2025

Introduction

- Agricultural animals are increasingly used in biomedical, translational, and comparative research leading to better understanding of various disease processes, and subsequent development of new products, medicines and treatments
- However, there is growing ethical and societal scrutiny resulting in demand for transparent, humane, and community-inclusive research
 - ✓ Animal welfare, rights, and the broader impact of the food system
 - ✓ Need for clear ethical frameworks
 - ✓ Community engagement
- Ethical soundness enhances scientific credibility and public trust

Agricultural animals in research

- Agricultural animals are domesticated animal species commonly kept with a primary role of production or utility in agriculture (food, value added products, labour or income)
- Some animals are classified differently depending on context
- For example, buffaloes and crocodiles are regarded as wild animals in Uganda, yet considered agricultural animals in other countries where they are farmed

Examples of agricultural animals

- Cattle
- Goats and sheep
- Pigs
- Poultry
- Fish
- Rabbits
- Horses, donkeys, and camels
- Beneficial insects
 - Bees
 - Black Soldier Flies

Why use agricultural animals in research?

- Their physiology and organ systems are usually closer to humans than laboratory animals → better translational models
- Share diseases/zoonotics with humans, helping in comparative medicine research
- Appropriate size for surgical training & medical-device testing
- Provide understanding into areas (nutrition, metabolism, reproduction, & growth) relevant to both human & veterinary health
- Can be genetically engineered to produce medicines, vaccines, or organs for transplantation
- They help improve livestock productivity, food security, and animal welfare through agricultural research
- Enable production of biopharmaceuticals (e.g., human proteins in milk)

- There are clear benefits to society including;
 - Improved human and animal health
 - Advances in veterinary medicine
 - Food security and agricultural innovation

Key areas of use

- Translational biomedical research (From basic understanding to realworld impact)
 - Pre-clinical studies (Developing promising discoveries into potential therapies or diagnostic tools)
 - Clinical Trials (Evaluating the safety and effectiveness of new treatments or diagnostics)

Comparative medicine

- Observing and treating diseases in a number of animal species to gain knowledge applicable to human and other animal health
- Using animal models (e.g. rodents, non-human primates) to study human diseases

Key areas of use cont'd

- Nutrition, physiology and metabolic studies
 - Dietary manipulations
 - Surgical procedures such as rumen fistulation used in cattle and sheep to study rumen fermentation and nutrient utilization
 - Selective breeding for extreme traits

- Genetic engineering and biotechnology
 - Engineering of animals for organ transplantation
 - Manipulating animals to express foreign genes (e.g., human proteins in milk)
 - Use of techniques like cloning, embryo transfer, or gene editing

Considerations for research involving animals in translational biomedical research

- ■These studies can be **invasive** Need for strict standards for anesthesia, analgesia, and post-operative care to minimize pain, suffering and distress
- Agricultural animals may also be food sources - Need for ethical clarity on whether research animals can enter the food chain and under what conditions
- Translational trials can last be **long-lasting** Need for management practices thru adequate housing, nutrition, and enrichment to support both welfare and scientific validity

- Close contact between researchers and large animals increases the risk of disease transfer. - Need for ethical responsibility includes protecting both human animal handlers and animals
- Using large, familiar production animals in biomedical research can raise stronger ethical and societal concerns than rodent use - Need for clear communication and justification

Considerations for research involving animals in Genetic engineering and biotechnology

- Some genetic changes may cause unintended suffering, deformities, reduced fertility, or impaired immunity
- Manipulating animals to express foreign genes (for example, producing human proteins in milk) raises ethical concerns about maintaining the integrity and natural identity of the species
- Genetically engineered animals often require lifelong monitoring for health and welfare issues - Commitment needed

- Engineering pigs or cattle for organ transplantation introduces risks of zoonotic disease transfer; ethical debates about creating animals as organ sources
- Escape or release of genetically modified animals could disrupt ecosystems or spread altered genes into wild populations Containment necessary
- Genetic engineering of food animals may conflict with cultural, religious, or consumer values - Transparency and engagement with stakeholders required

Considerations for research involving agricultural animals in comparative medicine

- Many comparative studies focus on diseases shared between humans and animals (e.g., tuberculosis, brucellosis, influenza) Need for efforts to prevent cross-infection are imperative
- Agricultural animals used in comparative studies are often **part of food systems** Ethical clarity is needed on whether such animals can re-enter the food chain after experimental use
- Some comparative studies (especially in rare diseases) require many animals to track disease spread or treatment responses Need to consider 3Rs framework

- Animals must be housed in secure, speciesappropriate environments that prevent pathogen escape and protect welfare during infectious disease trials
- Comparative studies often track disease progression over time the need to balance longitudinal study requirements with minimizing pain, stress, or reduced quality of life
- Using production animals for humanrelated disease studies may raise public concern - Need for clear communication and transparency

Considerations for research involving fish

- Fish perceive pain and stress, so procedures must minimize suffering where possible thru proper anesthesia, analgesia, and humane endpoints. Sneddon, L. U. (2020) *The welfare of fish*, 229-249
- Fish welfare depends directly on water conditions. Vital parameters such as temperature, oxygen, pH, and stocking density must be closely controlled
- Fish are highly sensitive to rough handling, crowding, or exposure to air
- Fish are extremely diverse with different biological needs. Ethical care must be custom-made to the species under study

- Euthanasia must be rapid and humane, often requiring specific approaches (like overdose of anesthetic agents), since standard methods for mammals may not be appropriate
- Escape of laboratory or genetically modified fish into natural ecosystems can have major ecological consequences, so containment is a key ethical issue

Considerations for research involving insects

Research using insects has fewer ethical restrictions compared to vertebrate animals, but there are still important considerations researchers must take into account:

- Evidence suggests certain insects may feel pain or stress thus, researchers should minimize unnecessary harm
- Insects are often used in very large numbers. Ethical review should ensure the scale of use is justified
- Many insects are pests or disease vectors. Preventing escape into the environment, which could cause ecological or public health risks is imperative
- Studies involving genetically engineered insects, long-term ecological effects, community acceptance, and regulatory compliance must be addressed

- Insects are important in food, culture, and livelihoods – Need for researchers to respect societal values when collecting, studying, and/or releasing insects
- Collecting large proportions of wild insects or releasing laboratory-reared insects can disturb the balance of ecosystems - Need to balance scientific goals with conservation obligations

Considerations for research involving animals in nutritional, physiological and metabolic studies

- Trials often require controlled feeding or restricted diets Need that restrictions do not cause prolonged hunger, weakness, or suffering beyond what is scientifically necessary
- In ruminant studies, surgical access to the rumen (Rumen fistulation and cannulation) is sometimes used Need for strict justification, proper surgical technique, pain management, and lifelong monitoring of the animal's welfare
- Nutritional and metabolic studies routinely involve frequent blood, tissue, or rumen fluid collection – Need to minimize invasiveness, should use trained personnel, and apply of anesthesia or analgesia
- Many studies run for months or years Need for animals to be kept in environments that support natural behaviors, reduce stress, and prevent chronic discomfort

- Close monitoring of growth, weight loss, or metabolic stress, should have clear humane endpoints, if animals lose condition
- When studying restricted or manipulated diets, animals should still receive adequate nutrients to maintain basic health and welfare
- With advancements in science and technology, alternative options such as simulation, in silico models should be explored first

Research clearance and regulatory approval

(A) Administrative clearance

- (1) The Commissioner for Animal Health and or other relevant agencies and organizations
 - Application submission
 - Assessment of animal health implications.
 - Veterinary approval
 - Inter-agency consultation if more info is required
 - Issuance of formal clearance

- (2) The National Animal Genetic Resources Centre and Data Bank (NAGRC&DB) as per sections 4, 5, 7 and 8 of the Animal Breeding Act (2001)
 - Interrogate if proposed research aligns with the mandate of conserving, regulating, and improving animal genetic resources
 - Evaluate whether the study requires use, import, or export of genetic materials (semen, embryos, live animals)
 - Researchers may need to register and obtain a license to access or use genetic resources in their work
 - If breeding related, ensure adherence to established breeding standards, record-keeping, and proper reporting of genetic data generated by the study
 - Approval is granted if the project meets breeding and conservation standards, with monitoring mechanisms in place

Compliance

- (B) Scientific, ethical review and approval
- 1) Clearance from the Scientific Committees
 - A complete research protocol. Assess the scientific merit, feasibility, and methodological soundness of submitted studies
 - Ensure research involving animals meets ethical standards and follows established guidelines
 - Examine potential benefits of the research against risks to animals, humans, or the environment
 - Monitor whether researchers adhere to approved protocols, reporting, and data integrity
 - Provide guidance to researchers on best practices, responsible conduct of research, and emerging scientific issues

Compliance cont'd

2) Clearance from IACUC

- A complete research protocol with a protocol version number and date
- Evidence/plan for acquisition of animals, husbandry and end point procedures
- Study instruments e.g. questionnaires, case report forms, and other data collection tools/forms
- Samples of trial drugs/devices and or other appropriate interventions
- Informed consent documents
- Evidence that the researcher is appropriately qualified, experienced and, where applicable, licensed, and has adequate facilities for safe and efficient conduct of research
- Evidence/plan of GCP training for the researcher and study team
- A plan for community engagement and dissemination of research findings to the relevant stakeholders
- Monitor whether researchers adhere to approved protocols, reporting, and data integrity

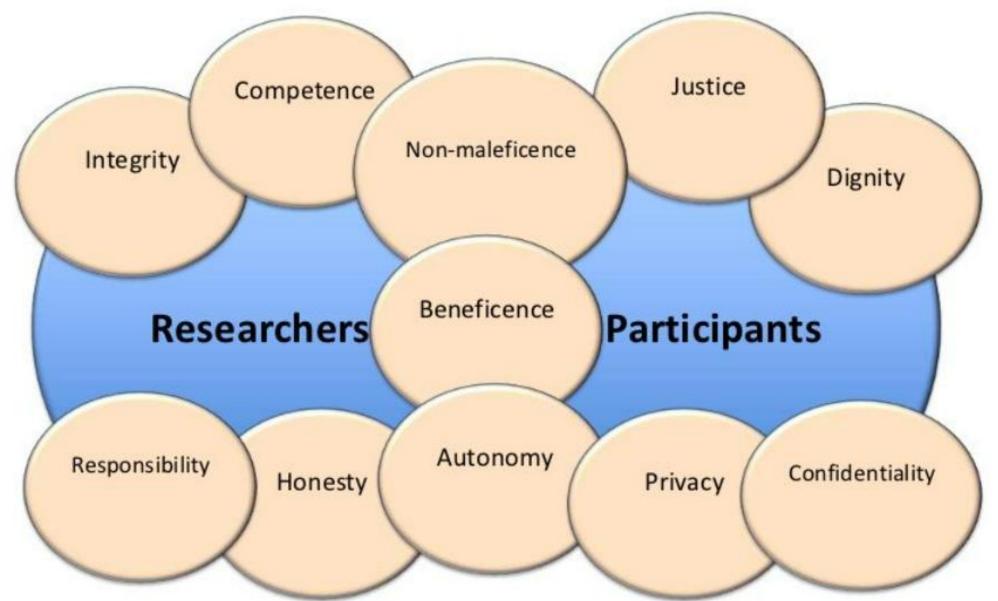
Compliance cont'd

3) Clearance from the Institutional Biosafety Committees

- Submission of a completed research protocol
- Risk assessment associated with handling biological materials
- Regulatory compliance to national and international biosafety laws, standards, and guidelines
- Approval of research protocols for safety and containment
- Implementation, monitoring and enforcement of corrective actions where necessary
- Training and capacity building of researchers and staff on biosafety practices, emergency response, and safe disposal of biological waste

Compliance cont'd

- 4) Clearance from the UNCST, registration of study and research permit.
 - 1. A completed research protocol
 - 2. Informed consent
 - 3. Scientific merit (methodologies, data management plan, data collection tools)
 - 4. Capacity and competence of research
 - 5. Safety issues (to animal, environment, humans)
 - 6. Ethical compliance
 - 7. Risk management plan
 - 8. Stakeholder engagement plan, public interest and benefits
 - 9. Transparency and reporting (annual reports, periodic monitoring reviews)
 - 10. Animal welfare and humane treatment
 - 11. Regulatory and institutional approvals including clearance from the other relevant authorities and committees before submission and evidence of IACUC and Scientific committee review.
- 5) Clearance from NDA (If intending to conduct a clinical trial obtain a field trial certificate): On-station and Field trials



General/Universal ethical considerations

- Persons planning to use animals in research and teaching should ensure their proper care and use in consideration of the following general guiding principles:
 - Scientific sound
 - Animal welfare
 - Replacement, Reduction and Refinement (the 3Rs) in research protocol design and implementation
 - Responsibility
 - Responsiveness to community needs

Ethical Principles of Research

https://www.publichealthnotes.com/research-ethics-definition-principles-and-advantages/

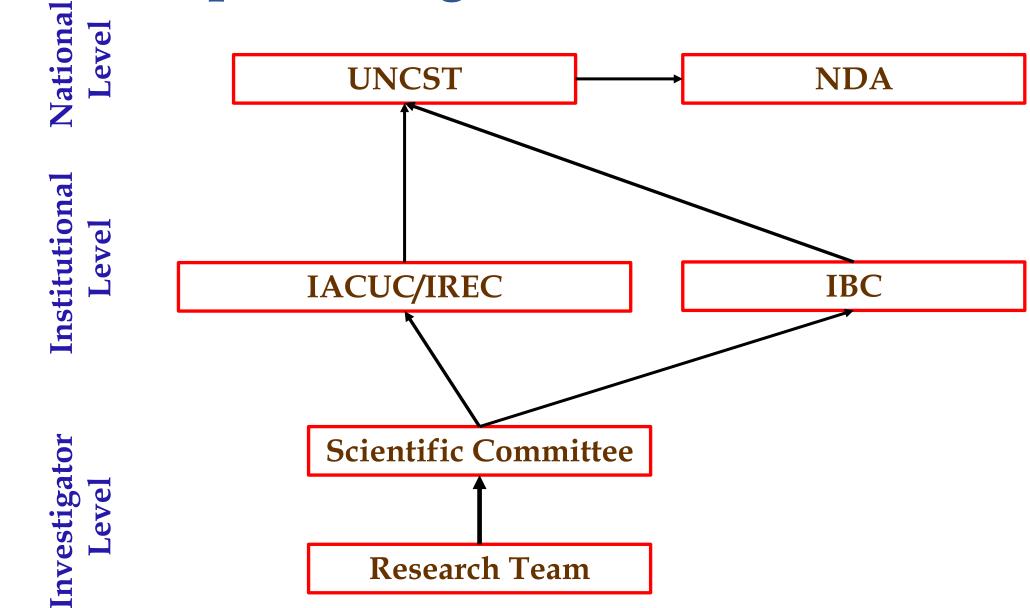
Legal frameworks and Institutional Alignment

National: UNCST Guidelines (2021), Animals (Prevention of Cruelty) Act, 1957 (Cap 39, and Animal Breeding Act (2001)

International:

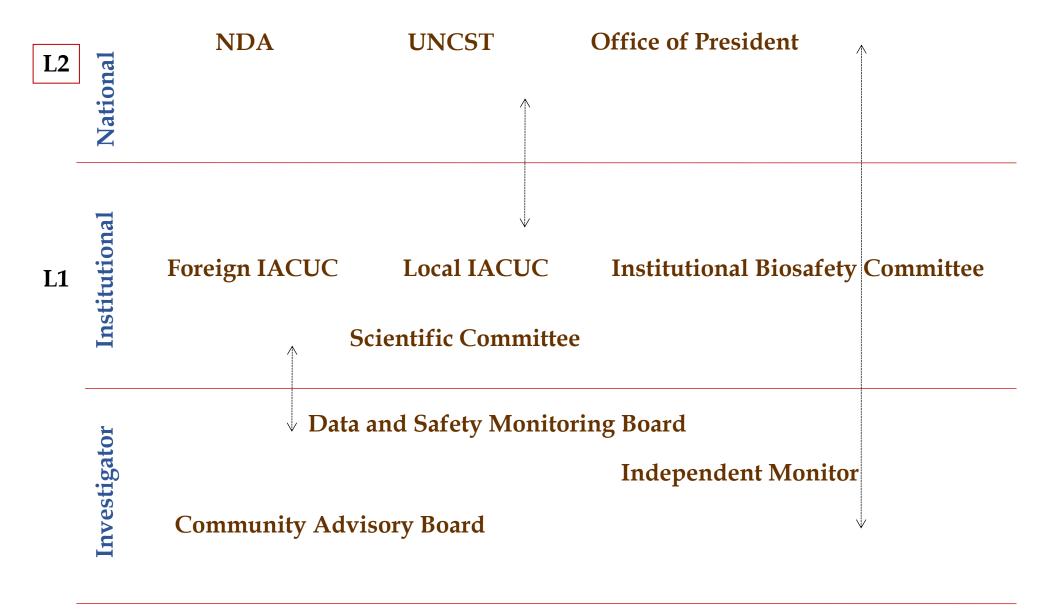
- World Organisation for Animal Health (WOAH) Animal Welfare Standards
- Organisation for Economic Co-operation and Development (OECD) test guidelines, good laboratory practice (GLP) standards, and biosafety principles
- European Union (EU) Directive 2010/63
- Association for Assessment and Accreditation of Laboratory Animal Care (AAALAC) voluntary accreditation and assessment programs

Alignment ensures credibility, publication eligibility, and global collaboration



Community engagement in animal research

- Communities as owners, custodians, and beneficiaries of animals
- Transparency builds acceptance & trust
- Engage in:
 - Dialogue before, during, after trials
 - Feedback mechanisms for local concerns
 - Respect for cultural and religious values
- Community input helps shape ethical acceptability and sustainability



Protocol processing

Outline of the research implementation structure

Key take home messages

- Agricultural animals play an important role in research
- The use of agricultural animals in research should be guided by ethical considerations that can be unique for each animal category
- Regulatory approval and compliance are essential to ensure that research is conducted transparently and with integrity
- Compliance with national and global frameworks safeguards both animals and science
- Community engagement transforms ethics from regulation to shared responsibility

Tank you so much for your kind attention